Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes

نویسندگان

  • Immaculada Oliveras
  • Liana O. Anderson
  • Yadvinder Malhi
چکیده

In the tropical Andes, there have been very few systematic studies aimed at understanding the biomass burning dynamics in the area. This paper seeks to advance on our understanding of burning regimes in this region, with the first detailed and comprehensive assessment of fire occurrence and the derived gross biomass burning emissions of an area of the Peruvian tropical Andes. We selected an area of 2.8 million hectares at altitudes over 2000m. We analyzed fire occurrence over a 12 year period with three types of satellite data. Fire dynamics showed a large intra-annual and interannual variability, with most fires occurring May–October (the period coinciding with the dry season). Total area burned decreased with increasing rainfall until a given rainfall threshold beyond which no relationship was found. The estimated fire return interval (FRI) for the area is 37 years for grasslands, which is within the range reported for grasslands, and 65 years for forests, which is remarkably shorter than other reported FRI in tropical moist forests. The greatest contribution (60–70%, depending on the data source) to biomass burning emissions came from burned montane cloud forests (4.5 million Mg CO2 over the study period), despite accounting for only 7.4–10% of the total burned area. Gross aboveground biomass emissions (7.55±2.14 Tg CO2; 0.43 ± 0.04 Tg CO; 24,012 ± 2685Mg CH4 for the study area) were larger than previously reported for the tropical Andes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories

We describe an estimation technique for biomass burning emissions in South America based on a combination of remote sensing fire products and field observations. For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. 5 The burnt area is estimated from the instantaneous...

متن کامل

Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass ...

متن کامل

Remote sensing constraints on South America fire traits by Bayesian fusion of atmospheric and surface data

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Abstract Satellite observations reveal substantial burning during the 2007 and 2010 tropical South America fire season, with both years exhibiting similar total burned a...

متن کامل

Global Near-Real-Time Estimates of Biomass Burning Emissions using Satellite Active Fire Detections

We present a new technique for generating daily global estimates of biomass burning emissions suitable for use in models forecasting atmospheric chemical composition and air quality. We combine ecosystem-dependent carbon fuel databases, fire weather severity estimates, and near-real-time satellite fire detections from the MODIS instruments to estimate the amount of carbon released from active f...

متن کامل

Diurnal Variation of Smoke Optical Thickness from Goes-8

Each year more than 100Tg of smoke aerosols are released into the atmosphere from biomass burning out of which 80% is in the tropical regions (Hao and Liu, 1994). These aerosols affect the radiative energy balance of the earthatmosphere system both on regional and global scales. Satellite remote sensing plays a key role in biomass burning research by identifying fire sources and the spatial dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014